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Abstract

Some implications and consequences of the expansion of the universe are exami-
ned. In Chapter 1 it is shown that this expansion creates grave difficulties for the
Hoyle–Narlikar theory of gravitation.

Chapter 2 deals with perturbations of an expanding homogeneous and isotropic
universe. The conclusion is reached that galaxies cannot be formed as a result of the
growth of perturbations that were initially small. The propagation and absorption
of gravitational radiation is also investigated in this approximation.

In Chapter 3 gravitational radiation in an expanding universe is examined by a
method of asymptotic expansions. The ‘peeling–off’ behaviour and the asymptotic
group are derived.

Chapter 4 deals with the occurrence of singularities in cosmological models. It is
shown that a singularity is inevitable provided that certain very general conditions
are satisfied.
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Introduction

The idea that the universe is expanding is of recent origin. All the early cosmolo-
gies were essentially stationary and even Einstein, whose theory of relativity is the
basis for almost all modern developments in cosmology, found it natural to suggest
a static model of the universe.

However, there is a very grave difficulty associated with a static model such as
Einstein’s, which is supposed to have existed for an infinite time. For, if the stars
had been radiating energy at their present rates for an infinite time, they would
have needed an infinite supply of energy. Further, the flux of radiation now would
be infinite.

Alternatively, if they had only a limited supply of energy, the whole universe
would by now have reached thermal equilibrium, which is certainly not the case. This
difficulty was noticed by Olbers, who however was not able to suggest any solution.
The discovery of the recession of the nebulae by Hubble led to the abandonment of
static models in favour of ones which were expanding.

Clearly there are several possibilities: the universe may have expanded from a
highly dense state a finite time ago (the so-called “big bang” model); another is
that the present expansion may have been preceded by a contraction which, in Its
turn may have been preceded by another expansion (the “bouncing” or oscillating
model); however, this model suffers from the same difficulties over entropy as the
static model. Finally, it is possible that the expansion may have been proceeding at
much the same rate for an infinite time. It is then necessary to postulate some form
of continual creation of matter in order to prevent the expansion from reducing the
density to zero. This leads to the “steady-state” model which, although expanding,
presents the same appearance at all times.

The early cosmologies naturally placed man at or near the centre of the universe,
but since the time of Copernicus we have been demoted to a medium-sized planet
going round a medium-sized star somewhere near the edge of a fairly average galaxy.
We are now so humble that we would not claim to occupy any special position.
However, observations seem to indicate that, within experimental error (which is
fairly high), galaxies have a spatially isotropic distribution around us. As we are
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not claiming any special position, the distribution must be isotropic about every
point. This implies that the distribution must be spatially homogeneous as well as
isotropic. Of course, this homogeneity and isotropy hold only on a large scale; locally
there are considerable departures from both.
Robertson and Walker have shown that the metric of a model that is spatially
homogeneous and isotropic may be written in the form:

ds2 = dt2 −R2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
, κ = 0,±1

This form will be used extensively in the following chapters. In Chapter 1 it will be
shown that the Hoyle–Narlikar theory of gravitation is incompatible with a metric of
this form. In Chapter 2 perturbations of this form will be considered in a linearized
approximation and, in Chapter 3, gravitational radiation will be considered in a
model which tends asymptotically to this form.

Certain of the Robertson–Walker models possess “horizons”. There are two types:
particle horizons and event horizons. A particle horizon is said to exist when an
observer’s past light cone does not intersect the world line of every particle in the
universe (or extended world line in the case of a particle which has been created).
An example of a model with a particle horizon is the Einstein–de Sitter model which
has

κ = 0, R = t
2
3 .

This is a “big–bang” model as indeed are all the Robertson–Walker models that
satisfy the Einstein equations:

Rab − 1
2
gabR = Tab

. . . and contain matter whose pressure is greater than minus one–third the density.
An event horizon exists when there are events that a given observer will never see.
The steady–state model

(
κ = 0, R = et

)
is an example of one with an event horizon.

Horizons will be further discussed in Chapter 4 which also deals with the occurrence
of singularities of space–time and their connection with topology.

Each chapter is self–contained and has its own references. The following notation
is used throughout: space–time is taken to be a Riemannian manifold with metric
tensor gij. This is taken to have signature −2 except in Chapter 2 where, in order to
facilitate comparison with previous work, the signature is +2. Covariant differentia-
tion is indicated by a semi–colon. Units are employed in which c, the speed of light,
and k, the gravitational constant, equal one.
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Chapter 1
The Hoyle–Narlikar Theory of
Gravitation

1. Introduction

The success of Maxwell’s equations has led to electrodynamics being normally for-
mulated in terms of fields that have degrees of freedom independent of the particles
in them. However, Gauss suggested that an action–at–a–distance theory in which
the action travelled at a finite velocity might be possible. This idea was developed by
Wheeler and Feynman [2, 3] who derived their theory from an action principle that
involved only direct interactions between pairs of particles. A feature of this theory
was that the ‘pseudo’–fields introduced are the half–retarded plus half–advanced
fields calculated from the world–lines of the particles.

However, Wheeler and Feynman, and, in a different way, Hogarth (3), were able
to show that, provided certain cosmological conditions were satisfied, these fields
could combine to give the observed field. Hoyle and Narlikar [4] extended the theory
to general space–times and obtained similar theories for their ‘C’–field [5] and for
the gravitational field [6]. It is with these theories that this chapter is concerned.

It will be shown that in an expanding universe the advanced fields are infinite,
and the retarded fields finite. This is because, unlike electric charges, all masses have
the same sign.

2. The Boundary Condition

Hoyle and Narlikar derive their theory from the action:

A =
∑
a̸=b

∑∫∫
G(a, b) da db,
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where the integration is over the world-lines of particles a, b... In this expression G
is a Green function that satisfies the wave equation:

G(x, x′);ij g
ij + 1

6
RG(x, x′) =

δ4(x, x′)√
−g

.

where S is the determinant of gijSincethedoublesumintheactionAissymmetricalbetweenallpailrsofparticlesa, b, onlythatpartofG(a, b)thatissymmetricalbetweenaandbwillcontributetotheactioni.e.theactioncanbewritten

A =
∑
a̸=b

∑∫∫
G∗(a, b) da db

where G∗(a, b) = 1
2
G(a, b) + 1

2
G(b, a).

Thus G∗ must be the time-symmetric Green function, and can be written:

G∗ = 1
2
Gret +

1
2
Gadv where Gret

and GadvaretheretardedandadvancedGreenfunctions.Byrequiringthattheactionbestationaryundervariationsofthegij, HoyleandNarlikarobtainthefield−
equations : [∑

a̸=b

∑
1
6
m(a)(x)m(b)(x)

] (
Rik − 1

2
gikR

)

= −Tik +
∑
a̸=b

∑
1
3
m(a)

[
gikm

(b)r
;r −m

(b)
;ik

]
+ 2
(
m

(a)
il m

(b)
j

l
)
− 1

4
gik m

(a);r m
(b)
j;r

where m(a)(x) =
∫
G∗(x, a) da.

However, as a consequence of the particular choice of Green function, the contrac-
tion of the field–equations is satisfied identically. There are thus only 9 equations
for the 10 components of gij and the system is indeterminate.

Hoyle and Narlikar therefore impose
∑

m(a) = m0 = const., as the tenth equation.
By then making the ‘smooth–fluid’ approximation, that is by putting

∑
a̸=b

∑
m(a)m(b) ≈ m2

0,

they obtain the Einstein field–equations:

1
6
m2

0

(
Rik − 1

2
Rgik

)
= −Tik.

There is an important difference, however, between these field–equations in the
direct–particle interaction theory and in the usual general theory of relativity. In
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the general theory of relativity, any metric that satisfies the the field–equations is
admissible, but in the direct–particle interaction theory only those solutions of the
field–equations are admissible that satisfy the additional requirement:

m0(x) =
∑

m(a)(x) =
∑∫

G∗(x, a) da = 1
2

∑∫
Gret(x, a) da+

1
2

∑∫
Gadv(x, a) da

This requirement is highly restrictive; it will be shown that it is not satisfied for
the cosmological solutions of the Einstein field–equations, and it appears that it
cannot be satisfied for any models of the universe that either contain an infinite
amount of matter or undergo infinite expansion.

The difficulty is similar to that occurring in Newtonian theory when it is recog-
nized that the universe might be infinite.

The Newtonian potential ϕ obeys the equation:

□ϕ = −κρ (ρ > 0),

where ρ is the density. In an infinite static universe, ϕ would be infinite, since the
source always has the same sign. The difficulty was resolved when it was realized that
the universe was expanding, since in an expanding universe the retarded solution
of the above equation is finite by a sort of ‘red–shift’ effect. The advanced solution
will be infinite by a ‘blue–shift’ effect. This is unimportant in Newtonian theory,
since one is free to choose the solution of the equation and so may ignore the infinite
advanced solution and take simply the finite retarded solution.

Similarly in the direct–particle interaction theory the m field satisfies the equation:

□m− 1
6
Rm = N (N > 0),

where N is the density of world–lines of particles. As in the Newtonian case, one
may expect that the effect of the expansion of the universe will be to make the
retarded solution finite and the advanced solution infinite. However, one is now not
free to choose the finite retarded solution, for the equation is derived from a direct–
particle interaction action–principle symmetric between pairs of particles, and one
must choose for m half the sum of the retarded and advanced solutions. We would
expect this to be infinite, and this is shown to be so in the next section.
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3. The Cosmological Solutions

The Robertson–Walker cosmological metrics have the form

ds2 = dt2 −R2(t)

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
.

Since they are conformally flat, one can choose coordinates in which they become

ds2 = Ω2
[
dτ 2 − dρ2 − ρ2(dθ2 + sin2 θ dϕ2)

]
= Ω2ηab dx

adxb,

where ηab is the flat–space metric tensor and

Ω = Ω(τ, ρ) =
R(t)√

[t+ 1
4
κ(τ + ρ)2][t+ 1

4
κ(τ − ρ)2]

. (7)

For example, for the Einstein–de Sitter universe

κ = 0, R(t) =
(

t
T

)2/3
, (0 < t < ∞),

Ω = R ·
(
τ
T

)2/3
, (0 < τ < ∞),

ρ = τ 2/3 ξ1/3.

For the steady–state (de Sitter) universe

κ = 0, R(t) = et/T , (−∞ < t < ∞).

Ω = R · 1
τ
, (−∞ < t < ∞),

r = ρ
( τ
T

− Tet/T
)
.

The Green function G∗(a, b) obeys the equation

□G∗(a, b)− 1
6
RG∗(a, b) =

δ4(a, b)√
−g

.

From this it follows that

1

Ω2

∂

∂xa

(
Ω2ηab

∂

∂xb
G∗
)

=
1

Ω2

∂

∂xa

(
ηab

∂

∂xb
S

)
= Ω−3 δ4(a, b).

8



If we let G∗ = Ω−1S, then

Ω2 ∂

∂xa

(
ηab

∂

∂xb
S

)
= δ4(a, b).

This is simply the flat–space Green function equation, and hence

G∗(t1, 0; t2, ρ) =
Ω(t1)

8πΩ(t2) ρ

[
δ(ρ− (t2 − t1)) + δ(ρ+ (t2 − t1))

]
.

The m–field is given by

m(t, x) =

∫
G∗N

√
−g dx = 1

2
(mret +madv).

For universes without creation (e.g. the Einstein–de Sitter universe),

N = R3n, n = const.

For Universes with creation (steady state) N = n, n = const.

Madv(τ1) = Ω−1(τ1)

∫
N Ω3(τ2)

4πr
4πr2 dτ2,

where the integration is over the future light cone. This will normally be infinite
in an expanding universe, e.g. in the Einstein–de Sitter universe:

Madv(τ1) =
(τ1
T

)−2
∫ ∞

τ1

n
(
τ2
T

)2
dτ2 = ∞.

In the steady–state universe

Madv(τ1) =
(

−T
τ1

)−1
∫ 0

τ1

n
(

−T
τ2

)3
(τ2 − τ1) dτ2 = ∞.

By contrast, on the other hand, we have

Mret(τ1) = Ω−1(τ1)

∫
N Ω3

4πr
4πr2 dr,

where the integration is over the past light cone. This will Normally be finite, e.g.
in the Einstein–de Sitter universe

Mret(τ1) =
(τ1
T

)−2
∫ τ1

0

n
(
τ2
T

)2
(τ2 − τ1) dτ2 =

1
2
nT 2.
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While in the steady–state universe

Mret(τ1) =
(

−T
τ1

)−1
∫ τ1

−∞
n
(

−T
τ2

)3
(τ2 − τ1) dτ2 =

1
2
nT 2.

Thus it can be seen that the solution m = const. of the equation

□m+ 1
6
Rm = N

is not, in a cosmological metric, the half–advanced plus half–retarded solution since
this would be infinite. In fact, in the case of the Einstein–de Sitter and steady–state
metrics, it is the pure retarded solution.

4. The ‘C’–Field

Hoyle and Narlikar derive their direct–particle interaction theory of the ‘C’–field
from the action

A =
∑
a̸=b

∫∫
Ĝ(a, b) ia kb da

4db4.

where the suffixes a, b refer to differentiation of Ĝ(a, b) on the world–lines of a, b
respectively. Ĝ is a Green function obeying the equation

□Ĝ(x, x′) =
δ4(x, x′)√

−g
.

We define the ‘C’–field by

C(x) =
∑

Ĝ(x, a) ia da
i,

and the matter–current Jκ by

Jκ(y) =
∑∫

δ4(y, b) dbκ.

Then
C(x) =

∫
Ĝ(x, y) Jκ(y);κ

√
−g dx′,

so that
□C = Jκ

;κ.

We thus see that the sources of the ‘C’–field are the places where matter is created
or destroyed.
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As in the case of the m–field, the Green function must be time–symmetric, that
is

Ĝ(a, b) = 1
2
Ĝret(a, b) +

1
2
Ĝadv(a, b)

Hoyle and Narlikar claim that if the action of the ‘C’–field is included along with
the action of the ‘m’–field, a universe will be obtained that approximates to the
steady–state universe on a large scale although there may be local irregularities. In
this universe, the value of C will be finite and its gradient time–like and of unit
magnitude.

Given this universe, we may check it for consistency by calculating the advanced
and retarded ‘C’–fields and finding if their sum is finite. We shall not do this directly
but will show that the advanced field is infinite while the retarded field is finite.

Consider a region in space–time bounded by a three–dimensional space–like hy-
persurface D at the present time, and the past light cone Σ of some point P to the
future of D.

By Gauss’s theorem∫
V

□C
√
−g dx4 =

∫
Σ+D

∂C

∂n
dS =

∫
Jκ

;κ

√
−g dx4.

Let the advanced field produced by sources within V be C ′. Then C ′ and ∂C′

∂n
will

be zero on Σ, and hence ∫
V

Jκ
;κ

√
−g dx4 =

∫
D

∂C ′

∂n
dS.

But Jκ
;κ is the rate of creation of matter = n (const.) in the steady–state universe,

and hence ∫
D

∂C ′

∂n
dS = nV.

As the point P is taken further into the future, the volume of the region V tends
to infinity. However, the area of the hypersurface D tends to a finite limit owing to
horizon effects. Therefore the gradient ∂C′

∂n
must be infinite. A similar calculation

shows the gradient of the retarded field to be finite. Their sums cannot therefore
give the field of unit gradient required by the Hoyle–Narlikar theory.

It is worth noting that this result was obtained without assumptions of a smooth
distribution of matter or of conformal flatness.
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5. Conclusion

It is one of the weaknesses of the Einstein theory of relativity that although it
furnishes field equations it does not provide boundary conditions for them. Thus it
does not give a unique model for the universe but allows a whole series of models.
Clearly a theory that provided boundary conditions and thus restricted the possible
solutions would be very attractive. The Hoyle–Narlikar theory does just that (the
requirement that m = 1

2
mret +

1
2
madv is equivalent to a boundary condition). Unfor-

tunately, as we have seen above, this condition excludes those models that seem to
correspond to the actual universe, namely the Robertson–Walker models.

The calculations given above have considered the universe as being filled with
a uniform distribution of matter. This is legitimate if we are able to make the
‘smooth–fluid’ approximation to obtain the Einstein equations. Alternatively, if this
approximation is invalid, it cannot be said that the theory yields the Einstein equa-
tions.

It might possibly be that local irregularities could make madv finite, but this has
certainly not been demonstrated and seems unlikely in view of the fact that, in the
Hoyle–Narlikar direct–particle interaction theory of their ‘C’–field,

which is derived from a very similar action–principle, it can be shown without
assuming a smooth distribution that the advanced ‘C’ field will be infinite in an
expanding universe with creation.

The reason that it is possible to formulate a direct–particle interaction theory
of electrodynamics that does not encounter this difficulty of having the advanced
solution infinite is that in electrodynamics there are equal numbers of sources of
positive and negative sign. Their fields can cancel each other out and the total field
can be zero apart from local irregularities. This suggests that a possible way to save
the Hoyle–Narlikar theory would be to allow masses of both positive and negative
sign. The action would be

A =
∑
a̸=b

qaqb

∫∫
G∗(a, b) da db, (qa, qb = ±1),

where qa, qb are gravitational charges analogous to electric charges. Particles of po-
sitive q in a positive ‘m’–field and particles of negative q in a negative ‘m’–field
would have the normal gravitational properties, that is, they would have positive
gravitational and inertial masses.

A particle of negative q in a positive ‘m’–field would still follow a geodesic. The-
refore it would be attracted by a particle of positive q. Its own gravitational effect
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however would be to repel all other particles. Thus it would have the properties of
the negative mass described by Bondi (8), that is, negative gravitational mass and
negative inertial mass.

Since there does not seem to be any matter having these properties in our region of
space (where m = const. > 0) there must clearly be separation on a very large scale.
It would not be possible to identify particles of negative q with antimatter, since it
is known that antimatter has positive inertial mass. However, the introduction of
negative masses would probably raise more difficulties than it would solve.
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Chapter 2
Perturbations

1. Introduction

Perturbations of a spatially isotropic and homogeneous expanding universe have
been investigated in a Newtonian approximation by Bonnor [Bonnor1957] and rela-
tivistically by Lifshitz [Lifshitz1946], Lifshitz and Khalatnikov [LifshitzKhalatnikov1963],
and Irvine [Irvine1965]. Their method was to consider small variations of the me-
tric tensor. This has the disadvantage that the metric tensor is not a physically
significant quantity, since one cannot directly measure it, but only its second deriva-
tives. It is thus not obvious what the physical interpretation of a given perturbation
of the metric is. Indeed it need have no physical significance at all, but merely co-
rrespond to a coordinate transformation. Instead it seems preferable to deal in terms
of perturbations of the physically significant quantity, the curvature.

2. Notation

Space–time is represented as a four–dimensional Riemannian space with metric
tensor gab of signature +2. Covariant differentiation in this space is indicated by a
semi–colon. Square brackets around indices indicate antisymmetrisation and round
brackets symmetrisation. The conventions for the Riemann and Ricci tensors are:

∇a;[bc] = 2Rp
acb∇p,

Rab = Rp
apb.

ηabcd is the alternating tensor.
Units are such that κ, the gravitational constant, and c, the speed of light, are

one
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3. The Field Equations

We assume the Einstein equations:

Rab − 1
2
gabR = −Tab

where Tab is the energy–momentum tensor of matter. We will assume that the matter
consists of a perfect fluid. Then,

Tab = µuaub + p hab

where ua is the velocity of the fluid, uau
a = −1 :

µ is the density, p is the pressure,

hab = gab + uaub is the projection operator into the hyperplane orthogonal to ua,

habu
b = 0.

We decompose the gradient of the velocity vector ua as

ua;b = ωab + σab +
1
3
hab θ − u̇aub

where
u̇a = ua;bu

b is the acceleration,

θ = ua
;a is the expansion,

σab = u(c;d)h
c
ah

d
b − 1

3
habθ is the shear,

ωab = u[c;d]h
c
ah

d
b is the rotation of the flow lines ua.

We define the rotation vector ωa as

ωa =
1
2
ηabcd ω

cdub.

We may decompose the Riemann tensor Rabcd into the Ricci tensor Rab and the
Weyl tensor Cabcd:

Rabcd = Cabcd − ga[cRd]b + gb[cRd]a − 1
3
Rga[cgd]b,

Cabcd = C[ab][cd], Ca
bca = 0 = Ca[bcd].
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Cabcd is that part of the curvature that is not determined locally by the matter.
It may thus be taken as representing the free gravitational field (Jordan, Ehlers and
Kundt[JordanKundt1960]). We may decompose it into its “electric” and “magne-
tic” components:

Eab = −Cabpq u
puq,

Hab = −1
2
Capqr η

qr
bs u

pus,

Cab
cd = 8u[aEb]

[cud] + 4δ[a
[cEb]

d] − 2ηab
cdupHp

[cud] − 2ηcdrsurHs[aub].

Eab = E(ab), Hab = H(ab),

Ea
a = Ha

a = 0,

Eabu
b = Habu

b = 0.

Eab and Hab each have five independent components.
We regard the Bianchi identities,

Rab[cd;e] = 0,

as field equations for the free gravitational field.
Then

Cabcd
d = −Rc[b;a] +

1
6
gc[bR;a],

(Kundt and Trümper[KundtTrumper1962]).
Using the decompositions given above, we may write these in a form analogous

to the Maxwell equations:

hb
eHbc;dh

cf + 3Habω
b − ηabcdu

bσc
eH

de = 3
2
ha

bµ;b, (1)

hb
eEbc;dh

cf + 3Eabω
b − ηabcdu

bσc
eE

de = (µ+ p)ωa, (2)

⊥ Ėab + hc
(aηb)cdeu

cHde + Eabθ − Ec
(aωb)c − Ec

(aσb)c − ηcde(aηbpqru
cupσd

qE
er

+ 2Hc
(aηb)cdeu

cu̇e = −1
2
(µ+ p)σab, (3)

⊥ Ḣab − hc
(aηb)cdeu

cEde +Habθ −Hc
(aωb)c −Hc

(aσb)c − ηcde(aηbpqru
cupσd

qH
er

+ 2Hc
(aηb)cdeu

cu̇e = 0. (4)

where ⊥ indicates projection by hab orthogonal to ua (c.f. Trümper (7)).
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The contracted Bianchi identities give,

(Rab − 1
2
gabR);b = −Tab

;b = 0,

µ̇+ (µ+ p)θ = 0, (5)

(µ+ p)u̇a + p,bh
b
a = 0. (6)

The definition of the Riemann tensor is,

ua;[bc] = 2Rapbcu
p.

Using the decompositions as above we may obtain what may be regarded as
“equations of motion”.

θ̇ = 2ω2 − 2σ2 − 1
3
θ2 + u̇a

;a − 1
2
(µ+ 3p), (7)

⊥ ω̇ab = −2
3
ωabθ + 2σc[aωb]

c + u̇[p;q]h
p
ah

q
b, (8)

⊥ σ̇ab = Eab − ωacω
c
b − σacσ

c
b − 2

3
σabθ

− 1
3
hab(2ω

2 − 2σ2 + u̇c
;c) + u̇au̇b + u̇(p;q)h

p
ah

q
b, (9)

where 2ω2 = ωabω
ab, 2σ2 = σabσ

ab.

We also obtain what may be regarded as equations of constraint:

θ,bh
ba = 3

2

[
(ωbc;b + σc

b;c)h
ca − u̇b(ωab + σab)

]
, (10)

ωa
;a = 2ωau̇

a, (11)

Hab = −hc
(aηb)cdeu

c
(
ωd;e + σd;e

)
. (12)

We consider perturbations of a universe that in the undisturbed state is confor-
mally flat, that is

Cabcd = 0.

By equations (1)–(3), this implies

σab = ωab = 0, hb
aµ;b = 0, θ;bh

ba.

If we assume an equation of state of the form, µ = µ(ρ), then by (6), (10),

µ,bh
b
a = 0 = µ̇ua.
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This implies that the universe is spatially homogeneous and isotropic since there
is no direction defined in the 3-space orthogonal to ua.

In this universe we consider small perturbations of the motion of the fluid and of
the Weyl tensor. We neglect products of small quantities and perform derivatives
with respect to the undisturbed metric. Since all the quantities we are interested
in with the exception of the scalars, µ, µ̇, θ have unperturbed value zero, we avoid
perturbations that merely represent coordinate transformation and have no physical
significance.

To the first order the equations (1)–(4) and (7)–(9) are

Eab
;b = 1

3
ha

bµ,b, (13)

Hab
;b = (µ+ h)ωa, (14)

Ėab + Ec(aθ + hc
(aηb)deu

dHe
c
;c = −1

2
(µ+ h)σab, (15)

Ḣab +Hc(aθ − hc
(aηb)deu

dEe
c
;c = 0, (16)

θ̇ = −1
3
θ2 + u̇a

;a − 1
2
(µ+ 3h), (17)

ω̇ab = −2
3
ωabθ + u̇[a;p]h

p
bh

q
a, (18)

σ̇ab = Eab − 2
3
σabθ − 1

3
habu̇

c
;c + u̇(p;q)h

p
ah

q
b. (19)

From these we see that perturbations of rotation or of Eab or Hab do not produce
perturbations of the expansion or the density. Nor do perturbations of Eab and Hab

produce rotational perturbations.

4. The Undisturbed Metric

Since in the unperturbed state the rotation and acceleration are zero, ua must be
hypersurface orthogonal.

ua = τ,a,

where τ measures the proper time along the world lines. As the surfaces τ =

constant are homogeneous and isotropic they must be 3-surfaces of constant curva-
ture. Therefore the metric can be written,

ds2 = −dτ 2 + Ω2dγ2,

where

Ω = Ω(τ),
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dγ2 is the line element of a space of zero or unit positive or negative curvature.

We define t by

dt

dτ
=

1

Ω
,

then

ds2 = Ω2
(
−dt2 + dγ2

)
.

In this metric,

ua = (−Ω, 0, 0, 0),

∴ θ =
3Ω̇

Ω
=

3Ω′

Ω2

(prime denotes differentiation with respect to t).

Then, by (5), (7)

µ̇ = −(µ+ h)
3Ω̇

Ω
, (20)

3
Ω̈

Ω
= −1

2
(µ+ 3h). (21)

If we know the relation between µ and h, we may determine Ω. We will consider
the two extreme cases, h = 0 (dust) and h = 1

3
µ (radiation). Any physical situation

should lie between these.

For h = 0

By (20), µ =
M

Ω3
, M = const.

∴
3

M
ΩΩ̈− 1

2
Ω2 = 0,

∴
3

M
Ω̇2 − 1

Ω
= E, E = const.
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(a) For E > 0,

Ω = 1
2E

(
cosh

√
EM
3

t− 1
)
, τ = 1

2E

(√
3

EM
sinh

√
EM
3

t+ t
)
;

(b) For E = 0,

Ω =
M

12
t2, τ =

M

36
t3;

(c) For E < 0,

Ω = − 1
2E

(
1− cos

√
−EM

3
t
)
, τ = − 1

2E

(
t−
√

3
−EM

sin
√

−EM
3

t
)
.

E represents the energy (kinetic + potential) per unit mass. If it is non–negative
the universe will expand indefinitely, otherwise it will eventually contract again. By
the Gauss–Codazzi equations ∗R, the curvature of the hypersurface τ = const. is

∗R = 2
(
−1

3
θ2 + µ

)
= −2EM

Ω2
.

If E > 0, ∗R = − 6

Ω2
, M =

3

E
;

E = 0, ∗R = 0;

If E < 0, ∗R =
6

Ω2
, M = − 3

E
.

For h = 1
3
µ

µ̇ = −4
Ω̇

Ω
,

3
Ω̈

Ω
= −µ, µ =

M

Ω4
,

∴
3

M
Ω̇2 − 1

Ω2
= E.

(a) For E > 0:

Ω =
1

E
sinh t, τ =

1

E
(cosh t− 1), ∗R = − 6

Ω2
;

(b) For E = 0:
Ω = t, τ = 1

2
t2, ∗R = 0;
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(c) For E < 0:

Ω =
1

E
sin t, τ =

1

E
(cos t− 1), ∗R =

6

Ω2
.

5. Rotational Perturbations

By (6)

u̇[c;d]h
c
ah

d
b = − ωab ḣ

µ+ h
.

ω̇ab = −ωab

(
2
3
θ + ḣ

µ+h

)
.

For h = 0,
ω =

ω0

Ω2
.

For h = µ
3
,

ω̇ = −ω

(
2
3
θ + 1

4

µ̇

µ

)
= −5

3
ωθ,

∴ ω =
ω0

Ω5
.

Thus rotation dies away as the universe expands. This is in fact a statement of
the conservation of angular momentum in an expanding universe.

6. Perturbations of Density

For h = 0 we have the equations,

µ̇ = −µθ,

θ̇ = −1
3
θ2 − 1

2
µ.

These involve no spatial derivatives. Thus the behaviour of one region is unaffec-
ted by the behaviour of another. Perturbations will consist in some regions having
slightly higher or lower values of θ than the average. If the universe as whole has a
value of E greater than zero, a small perturbation will still have E greater than zero
and will continue to expand. It will not contract to form a galaxy. If the universe has
a value of E less than zero, a small perturbation can contract. However it will only
begin contracting at a time δτ earlier than the whole universe begins contracting,
where
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δτ

τc
=

δE

E0

,

τc is the time at which the whole universe begins contracting. There is only any
real instability when E = 0. This case is of measure zero relative to all the possible
values E can have. However this cannot really be used as an argument to dismiss it
as there might be some reason why the universe should have E = 0.

For a region with energy −δE, in a universe with E = 0,

Ω =
1

4δE

(
t2 − t4

12
+ · · ·

)
,

τ =
1

12δE

(
t3 − t5

20
+ · · ·

)
,

µ =
3

6E Ω2
=

4

3
τ−2

(
1 +

(δE)2/3

21/3
τ 2/3 + · · ·

)
.

For E = 0, µ = 4
3
τ−2.

Thus the perturbation grows only as τ 2/3. This is not fast enough to produce
galaxies from statistical fluctuations even if these could occur. However, since an
evolutionary universe has a particle horizon (Rindler (8), Penrose (9)) different parts
do not communicate in the early stages. This makes it even more difficult for statis-
tical fluctuations to occur over a region until light had time to cross the region.

For h = µ
3

µ̇ = −4
3
µθ,

θ̇ = −1
3
θ2 − µ+ u̇a

;a,

u̇a = −hb
a µ,b

4µ
.

As before, a perturbation cannot contract unless it has a negative value of E.
The action of the pressure forces makes it still more difficult for it to contract.
Eliminating θ,

µµ̈− 5
4
µ̇2 − 5

3
µ3 + 4

3
µ2u̇a

;a = 0,

üa = u̇a
;b h

b
a
b + u̇au̇a = −1

4
hac (h

b
aµ,b);c
µ

to our approximation.
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hac∇ch
b
a∇b

is the Laplacian in the hypersurface τ = constant.
We represent the perturbation as a sum of eigenfunctions S(n) of this operator,

where

S(n)
;au

a = 0,

hac(hb
aS

(n)
,b);c = −n2

Ω2
S(n).

These eigenfunctions will be hyperspherical and pseudohyperspherical harmonics
in cases (c) and (a) respectively and plane waves in case (b). In case (c) n will take
only discrete values but in (a) and (b) it will take all positive values.

µ = µ0

(
1 +

∑
n

B(n)S(n)

)
,

where µ0 is the undisturbed density.

B̈(n)µ0 − 1
2
Ḃ(n)µ0 −B(n)

(
4
3
µ2
0 − n2

3Ω2µ0

)
= 0.

As long as µ0 >
n2

4Ω2 , B(n) will grow.
For µ0 ≫ n2

4Ω2 ,

B(n) ≃ C τ +D τ−1.

These perturbations grow for as long as light has not had time to travel a sig-
nificant distance compared to the scale of the perturbation (∼ Ω

n
). Until that time

pressure forces cannot act to even out perturbations.
When n2

Ω2 ≫ µ0,

B̈(n) + Ḃ(n) Ω̇

Ω
+ n2

3
B(n) = 0,

∴ B(n) ≃ C Ω−1
2 e

±i
n√
3
t
.

We obtain sound waves whose amplitude decreases with time. These results con-
firm those obtained by Lifshitz and Khalatnikov (3).

From the foregoing we see that galaxies cannot form as the result of the growth of
small perturbations. We may expect that other non– gravitational forces will have
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an effect smaller than pressure equal

7. The Steady-state Universe

To obtain the steady-state universe we must add extra terms to the energy–momentum
tensor. Hoyle and Narlikar (10) use,

Tab = µuaub + hab − CaCb +
1
2
gabCcC

d. (20)

where,

Ca = C;a, C;a
a = −j̇a

a, ja = −(µ+ h)ua.

Since Tab
;b = 0,

µ̇+ (µ+ h)θ + uaCµCb
;b = 0, (21)

(µ+ h)u̇a + hb
ah

c
b − hb

aCbCd
;d = 0. (22)

There is a difficulty here, if we require that the “C” field
should not produce acceleration or, in other words, that the matter created should

have the same velocity as the matter already in existence. We must then have

hb
aCb = 0. (23)

However since C is a scalar, this implies that the rotation of the medium is ze-
ro. On the other hand if (23) does not hold, the equations are indeterminate (c.f.
Raychaudhuri and Bannerjee (11)). In order to have a determinate set of equations
we will adopt (23) but drop the requirement that Ca is the gradient of a scalar.
The condition (23) is not very satisfactory but it is difficult to think of one more
satisfactory. Hoyle and Narlikar (12) seek to avoid this difficulty by taking a particle
rather than a fluid picture. However this has a serious drawback since it leads to
infinite fields (Hawking (13)).

From (17),

Ca = −ua

[
1− µ̇

µ+ µ̇+ (µ+ h)θ

]
.

∴ Ca
;a = −(µ̇+ h)− (µ+ h)θ,
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= −θ

(
1− µ̇

µ+ µ̇+ (µ+ h)θ

)
+

µ̇

µ+ µ̇+ (µ+ h)θ
.

For µ ≫ h

(µ̇+ ḣ) = θ
(
1− (µ+ h)

)
,

∴ (µ+ h) → 1.

Thus, small perturbations of density die away. Moreover equation (18) still holds,
and therefore rotational perturbations also die away. Equation (19) now becomes

θ̇ = −1
3
θ2 − 1

2
(µ+ 3h) + 1,

∴ θ →
√
3
(
1
2
− h
)
.

These results confirm those obtained by Hoyle and Narlikar (14). We see therefore
that galaxies cannot be formed in the steady-state universe by the growth of small
perturbations. However this does not exclude the possibility that there might be
a self-perpetuating system of finite perturbations which could produce galaxies.
(Sciama (15), Roxburgh and Saffman (16)).

8. Gravitational Waves

We now consider perturbations of the Weyl tensor that do not arise from rotational
or density perturbations, that is,

Eab
;b = Hab

;b = 0

Multiplying (15) by uc∇c, and (16) by ha
(cηb)

rsur∇s, we obtain, after a lot of
reduction,

Ëab −
(
Ecd;e h

c
fh

d
gh

e
(a h

fg
b)

)
+ hklha

thb
s 7
3
Ėab θ

+Eab

(
θ̇ + 4

3
θ2 + 1

3
(µ+ 3h)

)
+ σab

(
1
3
θ(µ+ h) + 1

2
(µ̇+ ḣ)

)
= 0. (24)

In empty space with a non-expanding congruence ua this reduces to the usual
form of the linearised theory,

□∗Eab = 0.

The second term in (24) is the Laplacian in the hypersurface τ = constant, acting
on Eab. We will write Eab as a sum of eigenfunctions of this operator,

Eab =
∑

A(n)V
(n)
ab ,
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where
V̇

(n)
ab = 0,

(
Vcd;e h

c
fh

d
gh

e
(ah

fg
b)

)
= −n2

Ω2
V

(n)
ab ,

Vab
;b = 0, Va

a = 0.

Then

Ėab =
∑ A(n)

Ω
V

(n)
ab , Ëab =

∑[
Ȧ(n)

Ω2
− A(n)

Ω2

]
V

(n)
ab .

Similarly,
σab =

∑
D(n)V

(n)
ab .

Then by (19)

D′(n) = ΩA(n) − 2D(n)Ω
′

Ω
.

Substituting in (24),

A′′(n)+
6Ω′

Ω
A′(n)+A(n)

[
n2 + 3

Ω′′

Ω
+ 6

Ω′2

Ω2
+ 1

3
(µ+ 3h)Ω2

]
+D(n)

[
Ω(µ+ h) + 1

2
Ω2(µ̇+ ḣ)

]
= 0.

We may differentiate again and substitute for D′. For n ≫ 1 and Ω ≫ n2

h2 ,

A(n) ≃ 1

Ω3/2
eint.

So the gravitational field Eab decreases as Ω−1 and the “energy” 1
2
(EabE

ab+HabH
ab)

as Ω−6. We might expect this as the Bianchi identities may be written, to the linear
approximation,

Ω ged
∂

∂xe

(
Ω2Cabcd

)
= Jabc.

Therefore if the interaction with the matter could be neglected Cabcd would be
proportional to Ω and Eab, Hab to Ω−1.

In the steady-state universe when µ and θ have reached their equilibrium values,

Rab =
(
1
2
µ+ h

)
gab,

Jabc = Rc[a;b] − 1
6
gc[aR;b] = 0.

Thus the interaction of the “C” field with gravitational radiation is equal and oppo-
site to that of the matter. There is then no net interaction, and Eab and Hab decrease
as Ω−1.

The “energy” 1
2
(EabE

ab + HabH
ab) depends on second derivatives of the metric.

It is therefore proportional to the frequency squared times the energy as measured
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by the energy momentum pseudo-tensor, in a local co-moving Cartesian coordinate
system, which depends only on first derivatives. Since the frequency will be inversely
proportional to Ω, the energy measured by the pseudo-tensor will be proportional
to Ω−4 as for other rest mass zero fields.

9. Absorption of Gravitational Waves

As we have seen, gravitational waves are not absorbed by a perfect fluid. Suppose
however there is a small amount of viscosity. We may represent this by the addition
of a term λσab to the energy–momentum tensor, where λ is the coefficient of viscosity
(Ehlers (17)).

Since
Tab

;b = 0

we have
µ̇+ (µ+ h)θ − 2λσ2 = 0, (25)

(µ+ h)u̇a + hb
aµ,b + λσcb

;bhc
a = 0. (26)

Equations (15) (16) become

Ėab + Ec(aθ + hc
(aηb)deu

cHf
d;e = −1

2
(µ+ h)σab − 1

2
λ
(
Eab − 1

3
σabθ

)
, (27)

Ḣab +Hc(aθ − hc
(aηb)deu

cEf
d;e = −1

2
λHab. (28)

The extra terms on the right of equations (27), (28) are similar to conduction

terms in Maxwell’s equations and will cause the wave to decrease by a factor e−
1
2
λt.

Neglecting expansion for the moment, suppose we have a wave of the form,

Eab = E0
abe

iντ .

This will be absorbed in a characteristic time 2/λ independent of frequency. By
(25) the rate of gain of rest mass energy of the matter will be 2λσ2 which by (19)
will be 2λE2ν−2. Thus the available energy in the wave is 4E2ν2. This confirms
that the density of available energy of gravitational radiation will decrease as Ω−4

in an expanding universe. From this we see that gravitational radiation behaves in
much the same way as other radiation fields. In the early stages of an evolutionary
universe when the temperature was very high we might expect an equilibrium to be
set up between black-body electromagnetic radiation and black-body gravitational
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radiation. Since they both have two polarisations their energy densities should be
equal. As the universe expanded they would both cool adiabatically at the same rate.
As we know the temperature of black-body extragalactic electromagnetic radiation
is less than 5◦K, the temperature of the black-body gravitational radiation must
be also less than this which would be absolutely undetectable. Now the energy
of gravitational radiation does not contribute to the ordinary energy–momentum
tensor Tab. Nevertheless it will have an active gravitational effect. By the expansion
equation,

θ̇ = −1
3
θ2 − 2σ2 − 1

2
(µ+ 3h).

For incoherent gravitational radiation at frequency ν,

σ2 = αE2ν−2.

But the energy density of the radiation is

4E2ν−2.

∴ θ̇ = −1
3
θ2 − 1

2
µG − 1

2
(µ+ 3h),

where µG is the gravitational “energy” density. Thus gravitational radiation has an
active attractive gravitational effect. It is interesting that this seems to be just half
that of electromagnetic radiation.

It has been suggested by Hogarth (18) and Hoyle and Narlikar (10), that there may
be a connection between the absorption of radiation and the Arrow of Time. Thus
in universes like the steady-state, in which all electromagnetic radiation emitted is
eventually absorbed by other matter, the Absorber theory would predict retarded
solutions of the Maxwell equations while in evolutionary universes in which electro-
magnetic radiation is not completely absorbed it would predict advanced solutions.
Similarly, if one accepted this theory, one would expect retarded solutions of the
Einstein equations if and only if all gravitational radiation emitted is eventually
absorbed by other matter. Clearly this is so for the steady–state universe since λ

will be constant. In evolutionary universes λ will be a function of time. We will
obtain complete absorption if

∫
λdτ diverges. Now for a gas, λ ∝ T 2 where T is

the temperature. For a monatomic gas, T ∝ Ω−2, therefore the integral will diverge
(just). However the expression used for viscosity assumed that the mean free path of
the atoms was small compared to the scale of the disturbance. Since the mean free
path ∝ µ−1κΩ−3 and the wavelength ∝ Ω−1, the mean free path will eventually be
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greater than the wavelength and so the effective viscosity will decrease more rapidly
than Ω−1. Thus there will not be complete absorption and the theory would not
predict retarded solutions.

However this is slightly academic since gravitational radiation has not yet been de-
tected, let alone investigated to see whether it corresponds to a retarded or advanced
solution.
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Chapter 3
Gravitational Radiation In An
Expanding Universe

Gravitational radiation in empty asymptotically flat space has been examined
by means of asymptotic expansions by a number of authors. (1–4) They find that
the different components of the outgoing radiation field “peel off”, that is, they go
as different powers of the affine radial distance. If one wishes to investigate how
this behaviour is modified by the presence of matter, one is faced with a difficulty
that does not arise in the case of, say, electromagnetic radiation in matter. For
this one can consider the radiation travelling through an infinite uniform medium
that is static apart from the disturbance created by the radiation. In the case of
gravitational radiation this is not possible. For, if the medium were initially static,
its own self–gravitation would cause it to contract in on itself and it would cease to
be static. Hence one is forced to investigate gravitational radiation in matter that
is either contracting or expanding.

As in Chapter 2, we identify the Weyl or conformal tensor Cabcd with the free
gravitational field and the Ricci–tensor Rab with the contribution of the matter
to the curvature. Instead of considering gravitational radiation in asymptotically
flat space, that is, space that approaches flat space at large radial distances, we
consider it in asymptotically conformally flat space. As it is only conformally flat,
the Ricci–tensor and the density of matter need not be zero.

To avoid essentially non–gravitational phenomena such as sound waves, we will
consider gravitational radiation travelling through dust. It was shown in Chapter 2
that a conformally flat universe filled with dust must have one of the metrics:

(a)

ds2 = −Ω2
(
dι2 − dϱ2 − sin2 ϱ

(
dθ2 + sin2 θ dϕ2

))
, Ω = A(1− cos τ) (1.1)

(b)
ds2 = Ω2

(
dt2 − dϱ2 − ϱ2

(
dθ2 + sin2 θ dϕ2

))
, Ω = 1

6
At2 (1.2)
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(c)

ds2 = Ω2
(
dt2 − dϱ2 − sinh2 ϱ

(
dθ2 + sin2 θ dϕ2

))
, Ω = A(cosh t− 1) (1.3)

Type (a) represents a universe in which the matter expands from the initial sin-
gularity with insufficient energy to reach infinity and so falls back again to another
singularity. It is therefore unsuitable for a discussion of gravitational radiation by a
method of asymptotic expansions since one cannot get an infinite distance from the
source.

Type (b) is the Einstein–de Sitter universe in which the matter has just sufficient
energy to reach infinity. It is thus a special case. D. Norman (5) has investigated
the “peeling off” behaviour in this case using Penrose’s conformal technique (6). He
was however forced to make certain assumptions about the movement of the matter
which will be shown to be false. Moreover, he was misled by the special nature
of the Einstein–de Sitter universe in which affine and luminosity distances differ.
Another reason for not considering radiation in the Einstein–de Sitter universe is
that it is unstable. The passage of a gravitational wave will cause it to contract
again eventually and develop a singularity.

We will therefore consider radiation in a universe of type (c) which corresponds
to the general case where the matter is expanding with more than enough energy to
avoid contracting again.

2. The Newman–Penrose Formalism

We employ the notation of Newman and Penrose. (3) A tetrad of null vectors,
lµ, nµ,mµ, m̄µ is introduced where:

lµl
µ = nµn

µ = mµm
µ = m̄µm̄

µ = lµm
µ = lµm̄

µ = nµm
µ = nµm̄

µ = 0,

lµn
µ = 1, mµm̄

µ = −1.

We label these vectors with a tetrad index

Zµ
a = (lµ, nµ,mµ, m̄µ), a = 1, 2, 3, 4.
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Tetrad indices are raised and lowered with the metric

ηab =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 . (2.1)

We have,
gµν = ηabZµ

aZ
ν
b = lµnν + nµlν −mµm̄ν − m̄µmν . (2.2)

Ricci rotation coefficients are defined by:

γabc = Zµ
a;νZ

ν
b Zcµ, (2.3)

γabc = −γacb.

In fact it is more convenient to work in terms of twelve complex combinations of
rotation coefficients defined as follows:

κ = γ131 = lµ;νm
µlν ,

π = −γ241 = −nµ;νm̄
µlν ,

ϵ = 1
2
(γ121 + γ341) =

1
2
(lµ;νn

µlν −mµ;νm̄
µlν),

ρ = γ134 = lµ;νm
µm̄ν ,

λ = −γ244 = −nµ;νm̄
µm̄ν ,

α = 1
2
(γ124 − γ344) =

1
2
(lµ;νn

µm̄ν −mµ;νm̄
µm̄ν),

β = 1
2
(γ123 − γ343) =

1
2
(lµ;νn

µmν −mµ;νm̄
µmν),

σ = γ133 = lµ;νm
µmν ,

µ = −γ243 = −nµ;νm̄
µmν ,

ν = −γ242 = −nµ;νn
µm̄ν ,

γ = 1
2
(γ122 − γ342) =

1
2
(lµ;νn

µnν −mµ;νm̄
µnν),

τ = γ132 = lµ;νm
µnν . (2.4)
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3. Coordinates

Like Newman and Penrose, we introduce a null coordinate

u(= X1), gµνu,µu,ν = 0. (3.1)

We take
lµ = u,µ.

Thus lµ will be geodesic and irrotational. This implies

κ = 0, ρ = ρ̄, ϵ = ϵ̄, α+ β̄ = 0. (3.2)

We take nµ,mµ, m̄µ to be parallely transported along lµ. This gives

π = ϵ = 0. (3.3)

As a second coordinate we take an affine parameter γ(= X2) along the geodesics
lµ,

γ,µl
µ = 1. (3.4)

X3 and X4 are two coordinates that label the geodesic in the surface u = const.

gµνX i
,µu,ν = X i

,µl
µ = 0. (3.5)

Thus,

gµν =


0 1 0 0

1 0 g23 g24

0 g23 g33 g34

0 g24 g34 g44

 . (3.6)

In these coordinates
lµ = δ1µ, lµ = δµ2,

since lµl
µ = 0, lµmµ = 0,

mµ = cos θ δµ3 + sin θ δµ4,

nµ = δµ1 + Uδµ2 +X iδµi, i = 3, 4. (3.7)
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The Field Equations

We may calculate the Ricci and Weyl tensor components from the relations

Rabcd −Rabdc = γab[c;d] − γab[d;c] + γaebγ
e
cd − γaedγ

e
bc, (3.8)

Rabcd = Cabcd + ηa[cRd]b + ηb[dRc]a +
R
3
ηa[cηd]b. (3.9)

Using the combinations of rotation coefficients already defined and with κ = π =

ϵ = 0, we have

Dρ = ρ2 + σσ̄ + Φ00, (3.10)

Dσ = 2ρσ +Ψ0, (3.11)

Dτ = ρτ + σ̄π +Ψ1 + Φ01, (3.12)

Dα = ρα + βσ̄ + Φ10, (3.13)

Dβ = ρβ + ασ +Ψ1, (3.14)

Dγ = τα+ τ̄β −Ψ2 − Λ + Φ11, (3.15)

Dλ = ρλ+ µσ̄ + Φ20, (3.16)

Dµ = ρµ+ σλ+Ψ2 + 2Λ, (3.17)

Dν = τλ+ τ̄µ+Ψ3 + Φ21. (3.18)

∆ν − δ̄γ = 2αν + (γ̄ − 3γ − µ− µ̄)λ−Ψ4, (3.19)

δρ− δ̄σ = (β̄ + α)ρ+ (β̄ − 3α)σ −Ψ1 + Φ01, (3.20)

δα− δ̄β = µρ− λσ − 2αβ + αᾱ + ββ̄ −Ψ2 + Λ+ Φ11, (3.21)

δλ− δ̄µ = (α + β̄)µ+ (ᾱ− 3β)λ−Ψ3 + Φ21, (3.22)

δν −∆µ = γµ− 2βτ + γ̄π + µ2 + λλ̄+ Φ22, (3.23)

δγ −∆β = γµ− σν − (µ− γ − γ̄)β + λα + Φ12, (3.24)
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δτ −∆σ = 2βτ + (γ̄ + µ− 3γ)σ − λ̄ρ+ Φ02, (3.25)

∆ρ− δ̄τ = (γ + γ̄ − µ̄)ρ− 2ατ − λσ −Ψ2 − 2Λ, (3.26)

∆α− δγ = ρν − τλ− λβ + (γ̄ − γ − µ̄)α−Ψ3. (3.27)

D = Lµ∇µ =
∂

∂r
(3.28)

∆ = Nµ∇µ = V
∂

∂r
+

∂

∂u
+X i ∂

∂xi
(3.29)

δ = Mµ∇µ = W
∂

∂r
+ ξi

∂

∂xi
(3.30)

Φ00 = −1
2
R11 = Φ00 (3.31)

Φ11 = −1
4
(R12 +R34) = Φ11 (3.32)

Φ01 = −1
2
R13 = Φ10 (3.33)

Φ12 = −1
2
R23 = Φ21 (3.34)

Φ02 = −1
2
R33 = Φ20 (3.35)

Φ22 = −1
2
R22 = Φ22 (3.36)

Λ = R
24

(3.37)

Ψ0 = −C1313 = −Cαβγδ l
αmβlγmδ (3.38)

Ψ1 = −C1213 = −Cαβγδ l
αnβlγmδ (3.39)

Ψ2 = −1
2
(C1212 + C1234) = −1

2
Cαβγδ

(
lαnβlγnδ + lαnβmγm̄δ

)
(3.40)

Ψ3 = C1224 = Cαβγδ l
αnβm̄γnδ (3.41)

Ψ4 = −C2424 = −Cαβγδ n
αm̄βnγm̄δ (3.42)

Expressing the rotation coefficients in terms of the metric, we have:
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D ξi = ρ ξi + σ ξ̄i (3.43)

Dω = ρω + σ ω̄ − (α + β̄) (3.44)

Dχ = τ ξi + τ̄ ξ̄i (3.45)

DU = τ ω + τ̄ ω̄ − (γ + γ̄) (3.46)

δχi −∆ξi = (µ+ γ̄ − γ) ξi + λ ξ̄i (3.47)

δ ξ̄i − δ̄ ξi = (β̄ − α) ξi + (ᾱ− β) ξ̄i (3.48)

δ ω̄ − δ̄ ω = (β̄ − α)ω + (ᾱ− β) ω̄ + (µ− µ̄) (3.49)

δU −∆ω = (µ+ γ̄ − γ)ω + λ̄ ω̄ − ν (3.50)

As in Chapter 2 we use the Bianchi identities as field equations for the Weyl
tensor. In the Newman–Penrose formalism they may be written: (I am indebted to
R. G. McLenaghan for these)
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δ̄Ψ0 −DΨ1 +DΦ01 − δΦ00 = (π − 4α)Ψ0 − 2(2τ + β)Φ00

+ 2ρΦ01 − 2δΦ10 (3.51)

∆Ψ0 − δΨ1 +DΦ02 − δΦ01 = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1

+ 3σΨ2 − λΦ00 − 2βΦ01 + 2δΦ11 − γΦ02

(3.52)

3(δ̄Ψ1 −DΨ2) + 2(DΦ11 − δΦ10) + δ̄Φ01 −∆Φ00

= 3λΨ0 − 9ρΨ2 + 6αΨ1

+ (µ− 2γ − 2γ̄)Φ00 + (2α + 2π̄)Φ01

+ 2(τ − 2α)Φ12 + 2ρΦ11 + 2δΦ20 − 6Φ02

(3.53)

3(∆Ψ1 − δΨ2) + 2(∆Φ01 − δΦ11) + (δΦ02 −∆Φ01)

= 3νΨ0 + 6(γ − µ)Ψ1 − 9τΨ2 + 6σΨ3

+ 2(µ− µ̄− γ)Φ01 − 2λΦ10 + 2νΦ11

+ (2α + π̄ − 2β)Φ02 + 2δΦ12 (3.54)

3(δ̄Ψ2 −DΨ3) + 2(DΦ21 − δΦ20) + 2(DΦ11 − δΦ21)

= 6µΨ1 − 6ρΨ3 − 2πΦ02 + 2(µ− µ̄− γ)Φ10

+ 4ᾱΦ11 + (2β − 2α− 2π)Φ20 − 2δΦ12 (3.55)
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3(∆Ψ2 − δΨ3) + (DΦ22 − δΦ21) + 2(δ̄Φ12 −∆Φ11) = 6νΨ2 − 9µΨ2 + 6(β − τ)Ψ3 − 3σΨ4

− 2νΦ01 + 2ν̄Φ10 + 2(µ̄− µ)Φ11 + 2λΦ02

− λΦ20 + 2(π̄ − 2β)Φ12 + 2(βτ − γµ)Φ21 − 6Φ22

(3.56)

δ̄Ψ3 −DΨ4 + δ̄Φ21 −∆Φ20 = 3λΨ2 − 2νΨ3 − ρΨ4

− 2νΦ01 + 2λΦ10 + (2γ − 2γ̄ − µ)Φ20

+ 2(π̄ − α)Φ21 − 6Φ22 (3.57)

∆Ψ3 − δΨ4 + δ̄Φ22 −∆Φ21 = 3νΨ2 − 2(γ + 2µ)Ψ3 + (4β − τ)Ψ4

− 2νΦ11 − ν̄Φ00 + 2λΦ02

+ 2(γ + µ̄)Φ11 + (π̄ − 2β − 2τ)Φ22

(3.58)

DΦ12 − δΦ11 − δ̄Φ02 +∆Φ01 + 3Λ = (2γ − µ− 2µ̄)Φ01 + πν̄Φ00

− λΦ02 − 2πΦ11 + (2β − 2α− π̄)Φ02 + 3ρΦ22 + 6Φ21

(3.59)

DΦ10 − δΦ01 +∆Φ00 + 3DΛ = (2γ − µ+ 2γ̄ − µ̄)Φ00 − 2(α + π̄)Φ10

− 2(τ + α)Φ10 + 4ρΦ11 + 6Φ02 − τΦ20

(3.60)

DΦ22 − δΦ21 − δ̄Φ12 +∆Φ11 + 3∆Λ = νΦ01 + ν̄Φ10 − 2(µ+ µ̄)Φ11

− λΦ02 − λ̄Φ20 + (2β̄ − τ)Φ12 + (2β − τ)Φ21

+ 2ρΦ22 (3.61)

4. The Undisturbed Metric

The undisturbed metric may be written

ds2 = Ω2
(
dt2 − dρ2 − sinh2 ρ (dθ2 + sin2 θ dϕ2)

)
where

Ω = A(cosh t− 1).
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Put
u = t− ρ,

then
ds2 = Ω2

[
−du2 + 2 du dt− sinh2(t− u) (dθ2 + sin2 θ dϕ2)

]
(4.1)

u is a null coordinate.
To calculate r, the affine parameter, we note that t is an affine parameter for the

metric within the square brackets. Therefore

r =

∫
Ω2 dt = B(u, θ, ϕ) (4.2)

will be an affine parameter for (4.1).
B is constant along the null geodesic. Normally it would be taken so that r = 0

when t = u. However, in our case it will be more convenient to make it zero and
define r as

r =

∫ t

0

Ω2 dt′ (4.3)

This means that surfaces of constant r are surfaces of constant t. This may seem
rather odd, but it should be pointed out that the choice of B will not affect the
asymptotic dependence of quantities. That is, if

f = O(r−n)

then
f = O(r′−n), r′ = r +B.

It proves easier to perform the calculations with this choice of r but all results
could be transformed back to a more normal coordinate system.

From (4.3)
r = A2

[
1
4
sinh 2t− 2 sinh t+ 3

2
t
]

(4.4)

The matter in the universe is assumed to be dust so its energy tensor may be
written

Tab = µVaVb (4.5)

For the undisturbed case, from Chapter 2

µ =
6A

Ω3
(4.6)

Va = Ω t;a, VaV
a = 1
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Now
Ω =

√
2s+ A− 3A2

2
√
2

log s

s
+O(s−1) (4.7)

where
s2 = r.

Therefore if we try to expand µ as a series in powers of s the result will be very
messy and will involve terms of the form

logn s

sn
x(∗)

* It should be pointed out that the expansions used will only be assumed to be valid
asymptotically. They will not be assumed to converge at finite distances nor will the
quantities concerned be assumed analytic. (see A. Erdelyi: Asymptotic Expansions –
Dover)

This does not invalidate it as an asymptotic expansion but it makes it tedious to
handle. For convenience therefore, we will perform the expansions in terms of Ω(r)
which will be defined in general as the same function of r as it is in the undisturbed
case. That is

Ω = A(cosh t− 1), r = A2
[
1
4
sinh 2t− 2 sinh t+ 3

2
t
]

(4.8)

then

dΩ

dr
=

√
1 + 3

2
A

Ω
=

1

Ω

[
1 +

A

Ω
− A2

2Ω2
+

A3

2Ω3
− 5A4

8Ω4
+

7A5

8Ω5
− · · ·

]
(4.9)

For the third and fourth coordinates it is more convenient to use stereographic
coordinates than spherical polars.

Since the matter is dust its energy–momentum tensor and hence the Ricci tensor
have only four independent components. We will take these as Λ, Φ00, Φ01 (since
Φ01 is complex it represents two components).

In terms of these the other components of the Ricci tensor may be expressed as:

Φ11 = 3Λ +
Φ01Φ̄01

Φ00
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Φ22 =
3

Φ00

Λ2

(
1 +

Φ01Φ̄01

6ΛΦ00

)2

Φ12 = Φ̄21 =
6ΛΦ01

Φ00

(
1 +

Φ01Φ̄01

6ΛΦ00

)2

Φ02 = Φ̄20 =
Φ2

01

Φ00

(4.10)

—
For the undisturbed universe with the coordinate system given:

Λ =
µ

24
=

A

4Ω3

Φ00 =
3A

Ω5
, Φ11 =

3A

4Ω3
, Φ22 =

3A

Ω

Φ01 = Φ02 = 0 (4.11)

—
Using these values and the fact that in the undisturbed universe all the Ψ(n) are

zero, we may integrate equations (3.10–50) to find the values of the spin coefficients
for the unperturbed universe:

ρ = − 2

Ω2
− A

Ω3
+

(
A2

2
− A2

2
e2u
)
Ω−4+A3(u−e2u)Ω−5+A4

(
5
8
− 1

4
u− 1

8
e4u
)
Ω−6+· · ·

ϵ = π = κ = ν = λ = χ = 0

ξ2 =
Seiu − ASeiu

Ω2
=

Seiu

Ω3
+ τA4(5SAu+ Se3u)Ω−4 + · · ·
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